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The asymmetric simple exclusion process with additional Langmuir kinetics, i.e., attachment and detach-
ment in the bulk, is a paradigmatic model for intracellular transport. Here we study this model in the presence
of randomly distributed inhomogeneities �“defects”�. Using Monte Carlo simulations, we find a multitude of
coexisting high- and low-density domains. The results are generic for one-dimensional driven diffusive systems
with short-range interactions and can be understood in terms of a local extremal principle for the current
profile. This principle is used to determine current profiles and phase diagrams as well as statistical properties
of ensembles of defect samples.
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I. INTRODUCTION

Despite several recent investigations �1–16� the influence
of sitewise disorder in driven lattice gases is not yet fully
understood �17�. One focus of studies on the influence of
disorder and inhomogeneities was the asymmetric simple ex-
clusion process �ASEP�, especially its totally asymmetric
variant �TASEP�. Not only is this process believed to capture
the essentials of driven diffusive systems, but its homoge-
neous version is exactly solvable �18–20�. The exact solution
allows the steady state properties analytically to be deter-
mined without approximations. These results can then be
used as a reference system to study the influence of disorder,
inhomogeneities, etc.

Here we will study the competition between disorder, re-
alized through randomly distributed hopping rates associated
with the sites in the TASEP, and Langmuir kinetics, i.e., at-
tachment and detachment processes in the bulk. This is not
only of theoretical interest due to the challenges posed by a
nontrivial current profile, but also of direct relevance for the
description of intracellular transport. The model that we will
study here was originally proposed to describe motor-based
transport along microtubules. Although the microtubules
themselves are homogeneous, the presence of microtubule-
associated proteins �21� can create inhomogeneities that in-
fluence the motion of the motors �22�.

In comparison to the TASEP, the current profile in the
presence of Langmuir kinetics is no longer constant. This
requires a slightly different approach since now a “local”
point of view becomes necessary. Our main interest will be
in the �local� transport capacity defined in Sec. II. This im-
portant observable is now also a local variable and is of
direct relevance for biological applications.

This paper is organized as follows. In Sec. II we define
the models that are considered here and review some rel-
evant results. Section III reports results for current and den-
sity profiles obtained by computer simulations. In Sec. IV we
develop a theoretical framework that helps us to understand
the simulation results and the phase diagram. This theoretical
approach is applied in Sec. V to compute the probability that
a randomly chosen defect configuration exhibits phase sepa-
ration. Finally, Sec. VI gives a summary and conclusions.

II. MODEL AND DEFINITIONS

We consider driven lattice gases with open boundary con-
ditions and Langmuir kinetics �LK�. To be more specific we
focus on the TASEP, which is believed to be a paradigmatic
example for this class of dynamic processes. Here different
extensions considering LK have been proposed, e.g., by in-
cluding the diffusion of detached particles �23,24�. We will
focus on a less detailed model variant, the TASEP-LK
�25,26�, which is a TASEP with additional particle creation
and annihilation in the bulk. The TASEP is defined on a
lattice of L sites which are numbered from j=1 to L begin-
ning at the left. Each site can be occupied by at most one
particle. The motion of the particles from left to right is
defined by �local� transition rates between adjacent sites. The
corresponding hopping rates pj describing the transitions of
particles to their right neighbors are inhomogeneous. We will
focus on a binary distribution with two possible values
pj = p or q at each site j, where q� p. Sites with transition
rate pj =q will be referred to as defect sites, while a site with
transition rate pj = p is called a nondefect site. In the follow-
ing we will call a stretch of l consecutive defect sites a
bottleneck of size l.

The boundaries of the system are connected to reservoirs
so that particles can enter at the left end �j=1� and leave at
the right end �j=L�. The �fixed� densities �0 and �L+1 of the
reservoirs control the effective entry and exit rates, �ª�0
and �ª1−�L+1, respectively.

Langmuir kinetics is realized by creation and annihalition
of particles in the bulk. This can be interpreted as particle
exchange with a bulk reservoir and corresponds to attach-
ment and detachment processes in the biological context.
The corresponding rates will be considered to be homoge-
neous, i.e., independent of the position, throughout this
paper.1

For large system size the investigation is usually simpli-
fied by performing a continuum limit. Since crucial proper-
ties, like the bottleneck lengths in a disordered system, might
depend on the system size, we have to specify this limit more

1The effects of inhomogeneities in the attachment and detachment
rates have recently been studied in �12�.
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carefully. We define a weak continuum limit where terms of
O�1 /L� are neglected while terms of O�1 / ln L� are kept, and
a strong continuum limit where we even neglect terms of
O�1 / ln L�. In the following we restrict ourselves to systems
where the local creation and annihilation rates �a and �d are
rescaled with the system size, while the global rates
�aª�aL and �dª�dL are kept constant. Hence �a and �d
are system parameters while �a and �d are adjusted to the
system size. In particular, in the �weak and strong� con-
tinuum limit, the local rates vanish: �a ,�d→0 for L→�.

In homogeneous regions of these systems there is a
unique current-density relation �CDR� J���, usually called
the fundamental diagram in the context of traffic flow, that
unambiguously gives the current for a given particle density
�= �� j� on any site �27�, where � j =0,1 is the occupation
number of site j. The CDR of the TASEP has a single maxi-
mum. Later, when we will also consider more general driven
lattice gases, we will always assume that their CDRs also
have a single maximum. The maximum is at the point �M
and takes the value JM =J��M�. In this case for a given cur-
rent J, two possible values for the density, the high-density
value �H�J�	�M and the low-density value �L�J���M exist.

For these systems, the nonconservation of particles can be
expressed by a source term in the equation of continuity of
the stationary state:2

Jj − Jj−1 = s��� , �1�

where Jj is the current through the bond between sites j and
j+1. The attachment of particles is assumed to be inhibited
by particles occupying sites, so we assume s��� to be a glo-
bally decreasing function. In fact one can construct models
with attractive interactions where s��� is an increasing func-
tion. However, those systems might exhibit nonergodic be-
havior �28� that we do not consider here. Since �a ,�d→0 in
the continuum limit, we also have s���→0 in this limit.
Hence locally the current is almost constant for large systems
and the CDR is the same as in the corresponding system
without LK �27,29�.

The time evolution per time interval 
t of the TASEP-LK
can be written in terms of transition rules. For 1� j�L,

hopping, 10 → 01 with probability pj
t ,

attachment, 0 → 1 with probability �a
t ,

detachment, 1 → 0 with probability �d
t; �2�

for j=1,

hopping, 10 → 01 with probability p1
t ,

entry, 0 → 1 with probability �
t ,

detachment, 1 → 0 with probability �d
t; �3�

and for j=L,

attachment, 0 → 1 with probability �a
t ,

exit, 1 → 0 with probability �
t . �4�

Other transitions are prohibited. Here “0” represents empty
and “1” occupied sites. We can write the time evolution of
the density � j = �� j� as

d� j

dt
�t� = pj−1�� j−1�t��1 − � j�t��� − pj�� j�t��1 − � j+1�t���

+ �a�1 − � j�t�� − �d� j�t� �5�

in the bulk and

d�1

dt
�t� = − p1��1�t��1 − �2�t��� + ��1 − �1�t�� − �d�1�t� ,

�6�

d�L

dt
�t� = pL−1��L−1�t��1 − �L�t��� − ��L�t� + �a�1 − �L�t��

�7�

at the left and right boundaries, respectively. The parameters
� ,� correspond to the generic boundary rates defined before.
The source term is s���=�a�1−��−�d�. We call the hopping
rates pj, which are site-dependent properties, intrinsic pa-
rameters, which in the following will be considered as fixed,
p=1 and q=0.6, if not stated otherwise. In contrast to this we
consider the explicit dependence of the system properties on
the external parameters �, �, �a, and �d. Other driven lat-
tice gases of the class characterized above can be written in
the same way, while the local parameters might depend on
the states in the vicinity of the sites and additional correla-
tions might occur. Nonetheless one can assume that the
TASEP-LK is quite universal as a paradigmatic model �29�.

In this work we are especially interested in randomly dis-
tributed defect sites. Here the defect density �, which is the
probability that a given site is a defect site, serves as an
additional system parameter. Hence, transition rates are dis-
tributed as

pj = �q with probability � ,

p with probability 1 − � .
� �8�

Defect distributions of this kind are called disordered.3 The
properties of such systems are not fully determined by the
defect density �, but also depend on the spatial distribution
of the defects. Since these properties can vary from sample
to sample even for fixed system parameters, an investigation
of ensembles of systems �e.g., the disorder average� rather
than single samples is an issue of physical relevance.

In the following sections we will make use of the particle-
hole symmetry exhibited by the TASEP-LK which is invari-
ant under the symmetry operation

2Actually s��� can be defined in this way.

3Note that the definition of the term “disorder” varies throughout
the literature. In some works systems with single inhomogeneities
are also called disordered, while we restrict ourselves to random
defect samples with finite defect density �.
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1 ↔ 0, � ↔ �, j ↔ L + 1 − j, �a ↔ �d. �9�

The particle-hole symmetry is not essential for the generic
behavior, but it allows reduction of the parameter space that
needs to be investigated.

The TASEP-LK with one defect site was already investi-
gated numerically and analytically in �30�. Now we want to
generalize these results to arbitrary samples of defects.
Therefore we introduce a local quantity, the transport capac-
ity J

j
*, which is the site-dependent maximum current that can

be achieved by tuning the external parameters �, �, �a, and
�d in the continuum limit.4 This quantity will be discussed in
detail in Sec. IV.

III. OBSERVATIONS BY COMPUTER SIMULATIONS

In this section we summarize some properties of the sys-
tem that can be observed with Monte Carlo simulations.
Therefore we compare quantities of the inhomogeneous
TASEP-LK with those of the homogeneous TASEP-LK and
the TASEP with defects. For simulations we used random-
sequential update with fast hopping probability p=1. If not
specified otherwise, we fix q=0.6 as the slow hopping rate.
The unit of time is just one time step so that probabilities and
rates have the same numerical value.

A. Few defects or vanishing fraction of defects

Before we consider finite defect densities �	0 we dis-
cuss systems with a fixed number of defects in the con-
tinuum limit ��=0�. Figures 1–3 display the dependence of
the densities and the current on the position in the system.

Figure 1 shows the density and current profiles of a
TASEP-LK system with five defects, a homogeneous
TASEP-LK system, and a TASEP with five defects in the
low-density phase. The density profiles of inhomogeneous
and homogeneous TASEP-LK systems differ only in the oc-
currence of narrow density peaks at the defects, while glo-
bally the density profile is the same. The current profiles of
the homogeneous and inhomogeneous system are identical.
In contrast, the density profile of the TASEP with defects at
the same sites shows density peaks as well, but the current
profile �and the density profile far from the boundaries� is
flat. This is due to particle conservation, while the lateral
influx of particles allows a spatial variation of the current
profile in the TASEP-LK, where particles are not conserved
in the bulk.

Figure 2 shows the corresponding situation for low exit
rate and high entry rate. Due to particle-hole symmetry, the
results are analogous to the previous case. Adopting the ter-
minology of the homogeneous system, the inhomogeneous
TASEP-LK system can be considered to be in a high-and
low-density phase, respectively.

Figure 3 displays density profiles for �	�. As in the case
above, homogeneous and inhomogeneous TASEP-LK sys-

tems exhibit the same density profiles, apart from the peaks.
In this case we see a shock in the density profile which is
characteristic for non-particle-conserving dynamics in the
bulk and which cannot be observed in the particle-
conserving TASEP �except at �=��.

Increasing the entry rate � for fixed and large �, one
observes a queuing transition in Fig. 4. At a critical entry rate

4Note that it is important that first the external rates are tuned and
then the continuum limit is taken, since the vanishing of the local
bulk influx s��� is necessary.

0 500 1000 1500 2000
site

0

0.05

0.1

0.15

0.2

0.25

de
ns

ity

TASEP with defects
pure TASEP/LK
TASEP/LK with defects

0 500 1000 1500 2000
site

0

0.05

0.1

0.15

0.2

cu
rr

en
t

TASEP with defects
pure TASEP/LK
TASEP/LK with defects

FIG. 1. �Color online� Comparison of current and density pro-
files for �=0.1 and �=0.9 �low-density phase� in the TASEP with
defects, homogeneous TASEP-LK, and TASEP-LK with defects
and �a=�d=0.1.
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FIG. 2. �Color online� Comparison of current and density pro-
files for �=0.9 and �=0.1 �high-density phase� in the TASEP with
defects, homogeneous TASEP-LK, and TASEP-LK with defects.
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�* the peak at the leftmost defect broadens, forming a high-
density region. This corresponds to phase separation and is
also observed in the inhomogeneous TASEP at critical
boundary rates. In the TASEP, however, the high-density re-
gime always extends to the left boundary. In contrast, the
inhomogeneous TASEP-LK system exhibits a stationary
shock separating the low- and high-density regions. Numeri-
cal finite-size scaling in Fig. 5 shows that the shock is getting
sharper with increasing system size. Thus the high density
region extends over a finite fraction of the system, corre-
sponding to phase separation. In contrast, the peaks diminish
for larger systems indicating that they are just local phenom-
ena. We can associate this phase separation with a phase
transition at the critical parameter value ��.

Increase in � further moves the shock position to the left.
The density profile right of the defect where phase separation
occurred no longer changes as the entry rate varies. The

same is true for the output current at the right boundary,
Jout=J�L�. At some value of � a second high-density region
starts to form. Thus in a system with many defects multiple
shocks can occur associated with alternating domains of high
and low density.

Above a critical value �*, where a high-density domain
extends to the left boundary, the density profile and the cur-
rent in the system are independent of the entry rate. Since
this independence also holds for large �, we call this a
Meissner phase in analogy with superconductors, where the
magnetic field in the interior bulk is independent of exterior
fields. This terminology was also used for the boundary-
independent phase in the homogeneous TASEP-LK �26�.
However, one has to note that, while in the homogeneous
system there are long-range boundary layers in the density
profile which do depend on boundary rates, the Meissner
phase in the disordered system exhibits only short-range
boundary layers. The current profile in fact does not depend
on the boundary rates, in either the homogeneous or inhomo-
geneous system.

Due to particle-hole symmetry all considerations made in
this section can be transferred to the high-density phase by
replacing � with �.

B. Finite fraction of defects and disordered systems

If the density of defects � is finite and the number of
defects is of the order of the system size, even a local in-
crease of the density in the vicinity of the defects has con-
siderable impact on the average density due to the large num-
ber of defects. The effect can be observed in Fig. 6 where we
have simulated disordered systems with small but finite de-
fect density � for small � and large �. In contrast to systems
with few defects, the current profile of the disordered system
differs from that of the homogeneous system. This is due to
the change of the density by defects, which leads to an al-
tered influx of particles in the bulk by attachment and de-
tachment. So the gradient of the current profile in the disor-
dered system is different from the one in the homogeneous
system and also from that in the system with few defects
because in the latter the effect on the average density is neg-
ligible.
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FIG. 3. �Color online� Comparison of current and density pro-
files for �=0.1 and �=0.15 �high-density phase� in the homoge-
neous TASEP-LK and TASEP-LK with defects.
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FIG. 4. �Color online� Density profiles for increasing values of
� and fixed �=0.9. At a critical value �* a high-density region at
the rightmost defect occurs �phase separation�. For higher �, mul-
tiple high-density regions appear.
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FIG. 5. �Color online� Density profiles for identical macroscopic
parameters �a=0.1, �d=0.1, �=0.35, �=0.9 but different system
sizes L. The left boundary of the high-density region �shock� be-
comes steeper with increasing system size, indicating a macro-
scopic regime.
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As in the TASEP-LK with few defects we observe mul-
tiple high- and low-density domains for large boundary rates,
which is displayed in Fig. 7. In fact it is harder to distinguish
macroscopic high- and low-density regimes in the disordered
case because of the rapid changes of density on a micro-
scopic scale. We have to simulate rather large systems in
order to identify a macroscopic high- �low-� density domain
by inspection. In Sec. V we introduce a numerical method
that can detect high- and low-density domains automatically.

IV. THEORETICAL TREATMENT

In this section we develop a theoretical framework for the
observations made by Monte Carlo simulations. We expect
that concepts developed in this section are generic for a

larger class of disordered driven lattice gases that have a
single maximum in the current-density relation and weak
induced effective interactions between defects. The restric-
tion “weak interaction” is discussed in detail in �11�. In ad-
dition, we assume that the bulk influx term S��� is decreasing
with increasing density.

First we summarize the properties that distinguish the in-
homogeneous �disordered� TASEP-LK from the TASEP and
homogeneous TASEP-LK, respectively.

�1� In the TASEP-LK the particle number is not conserved
in the bulk. Therefore generically the current profile is not
flat and stationary shocks can occur in the bulk. For particle-
conserving systems these are not possible �27,31�.

�2� In the homogeneous TASEP, the current is restricted
by the upper bound Jhom

max = p�1− p�=0.25 �for hopping rate
p=1� due to the bulk exclusion. Already a single defect site
with lower hopping rate q� p reduces this maximum station-
ary current �32�. In �30� it was shown that in the TASEP-LK
also a single defect site d restricts the current by a value
J

d
*
ªJd

max�Jhom
max at this site, that cannot be exceeded by tun-

ing external parameters. The quantity J
d
* is exactly the local

transport capacity defined in Sec. II. However, due to the
spatially varying current, this effect is only local and the
maximum value of the current Ji

max on sites i far away from
the defect can be larger than J

d
*. For completeness, we define

J
i
*=Jhom

max on nondefect sites i, so the transport capacity is
peaked on a single site. If the current imposed by the bound-
ary rates is larger than the transport capacity of a defect,
phase separation occurs, exhibiting stationary shocks. In the
inhomogeneous TASEP no stationary shocks can occur in the
bulk, thus the high-density regime always fills the whole
system left of the current-limiting defect.

�3� In systems with only few defects the relation between
the average density and the current at a given site is the same
as in the homogeneous system. Thus current profiles are al-
most the same �as long as the maximum current is not ex-
ceeded�. In disordered systems with a finite fraction of de-
fects, however, the current-density relation is not the same as
in the homogeneous system and depends on q and the distri-
bution of defects, since the large number of density peaks
have influence on the source term s��� in �1� on a macro-
scopic scale. Therefore the current profiles differ from those
in the homogeneous case.

In order to capture these properties, we follow the concept
of �30� by focusing on the current profiles J�x�.

A. The influence of defects: Additional initial conditions

Locally the current profiles are determined by the conti-
nuity equation �1�. Introducing the continuous variable
xª �i−1� / �L−1�, which is the relative position in the sys-
tem, one can write Ji−1=Ji− �1 /L�dJ /dx+O�1 /L2�. In the
stationary state the continuity equation �1� becomes

dJ

dx
= S��� + O�1/L� �10�

where the global source term S���=Ls��� was introduced. In
the TASEP-LK, for example, we have S���=�a�1−��−�d�.
In the continuum limit we neglect terms of O�1 /L� so that
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FIG. 6. �Color online� Comparison of current and density pro-
files for �=0.1 and �=0.9 �low-density phase� in the disordered
TASEP-LK with defect density �=0.1 and homogeneous
TASEP-LK.
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FIG. 7. �Color online� Density profile for �=0.9 and �=0.9 in
the disordered TASEP-LK with defect density �=0.2. One observes
phase separation with alternating high- and low-density domains.
The black line displays the density, averaged over 50 adjacent sites.
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�10� becomes an ordinary first-order differential equation in
the continuous variable x. The system, however, has at least
two initial conditions �e.g., the boundary conditions in the
homogeneous case�; thus it is overdetermined. Each initial
condition at a point x0 is associated with one solution of the
differential equation �10� Jx0

�x� for the current and �x0
�x� for

density, respectively. We call the mathematical solutions to
single initial conditions Jx0

�x� and �x0
�x� local current and

density profiles. Physically these solutions are not necessarily
realized.

For the TASEP-LK with a single defect it was shown by
Pierobon et al. �30� that the finite transport capacity at the
defect site, corresponding to a local upper bound of the cur-
rent, can be regarded as an additional condition on the cur-
rent profile. They argued that the local solution of �10� with
the initial condition J�xd�=J*�xd� becomes relevant if the lo-
cal current profiles of the boundary conditions exceed J* at
the defect site. Here we want to justify this approach and
generalize it to a larger class of driven lattice gases with
many defects, including randomly disordered systems, that
meet the restrictions noted earlier in this section.

In �11� it was shown that the maximum current in particle-
conserving driven lattice gases with randomly distributed de-
fects but low defect density depends approximately only on
the size of the longest bottleneck �single-bottleneck approxi-
mation �SBA��. This fact, together with the observations
made in �30�, motivates the generalization of the transport
capacity to driven lattice gases �including TASEP-LK� with
many defects but low defect density, introducing an approxi-
mation similiar to the SBA. We call it the locally indepen-
dent bottleneck approximation �LIBA�: The transport capac-
ity at a site x, J*�x�, is approximately equal to the maximum
current that can be achieved by tuning the boundary rates in
the corresponding system containing only one bottleneck at
this site.5 Thus J*�x� can be obtained by referring to a single-
bottleneck system where all other defects �except the bottle-
neck at site x� have been removed.

In systems without LK the current is spatially constant
and cannot exceed the minimum of J*�x� which corresponds
to the transport capacity of the longest bottleneck, since in
single-bottleneck systems the maximum current is equal to
the local transport capacity J*�x� and decreases with l
�8,10,33�. In this case the LIBA reduces to the SBA.

The LIBA neglects the influence of other defects on the
transport capacity at site x. Nonetheless, we claim that the
influence of other defects on the transport capacity can be
considered as a perturbation in the same way as is the case
for the SBA in particle-conserving systems �10�. Since the
local attachment and detachment rates vanish in the con-
tinuum limit, the transport capacity of a bottleneck should be
the same as in the corresponding particle-conserving system.
Therefore J*�x� is independent of �a and �d. For the TASEP
without LK analytical results are available �10,33� that can
be used to obtain approximations for the transport capacity.
Since the maximal current in these systems depends only on
the bottleneck length l�x� �8,10�, this holds also for the trans-

port capacity. The concept of a local transport capacity is
applicable if interactions of defects near a bottleneck are not
too large and distances of defects are not too small �i.e., low
defect density6�.

Hence, the transport capacity J*�x� yields an upper bound
for the current profile,

J�x� � J*�x� for all x , �11�

while the function J*�x� of course is not continuous. Since
on nondefect sites �which correspond to bottlenecks of size
l=0� the transport capacity is J*=Jhom

max, it is sufficient to
check condition �11� for defect sites. Their number is finite in
finite systems but can be infinite in the continuum limit �e.g.,
for disordered systems with finite defect density�.

The problem of condition �11� is that it is given as an
inequality and does not provide initial conditions for �10� on
the defect sites. We now want to show that �11� is identically
satisfied by a set of initial conditions

J�x� = J*�x� at defect sites x , �12�

if one assumes additionally that the physical local solution at
x is selected by shock dynamics.

First of all, if we assume the conditions �12� we see that,
in contrast to the boundary conditions of the system which
are usually given by a fixed density, the initial condition
imposed by a defect provides the possibility of two realiza-
tions of the local density profile. Given the initial condition
J�x0�=J*�x0� at a point x0, only the current is a fixed initial
condition while, due to the nonunique inversion of the
current-density relation �one maximum�, there are two pos-
sible values for the density, �H and �L �with �H	�L�, leading
to two possible local solutions of �10�, a high-density solu-
tion JH�x� and a low-density solution JL�x�:

J* → ��H → JH�x − x0,J*� ,

�L → JL�x − x0,J*� .
� �13�

Taking into account shock dynamics, a constraint on the se-
lection of a physical solution is given by the collective ve-
locity

vc�x� = J�„��x�… �14�

where J��� is the current density relation and the prime de-
notes the derivative with respect to � �34�. A solution can
only propagate away from the initial point if the direction of
vc is pointing away from it, i.e., left of it only solutions with
vc�0 can exist, while right of it solutions must have vc
	0. In a system with a single maximum at density �m in the
CDR, dJ /d�	0 for ���m and dJ /d��0 for �	�m; thus
left of an initial point only the high-density solution JH can
be realized, while right of it only JL can physically exist.
This principle is displayed in Fig. 8, top. Hence, each initial
condition at a point x0 can have its own solutions. We denote
these local solutions by

5In this terminology a nondefect site is also called a bottleneck of
size 0.

6In fact, for the disordered TASEP the approximation turns out to
be rather robust even for higher defect density.
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J�x − x0,J*� = �JH�x − x0,J*� for x � x0,

JL�x − x0,J*� for x 	 x0.
� �15�

Actually the dependence on J* can easily be obtained by a

shift operation if two functions J̃L�x� and J̃H�x� with initial

conditions J̃L�0�=JL
0 and J̃H�0�=JH

0 , where JL
0 and JH

0 are ar-
bitrary chosen values in the high- and low-density branch of
the CDR. If the range in both branches of the CDR includes
J=0, one can simply choose JL

0 =JH
0 =0.7 Since the ordinary

differential equation �10� is of first order and does not ex-
plicitly depend on x, the high- and low-density solutions un-
ambigiously depend on � and are monotonic. Thus different
local solutions JL,H can differ only by a shift in the variable
x. An arbitrary solution JL,H�x−x0 ,J*� can be obtained by

shifting J̃L,H�x� by an amount x̃L,H�J*� so that the value of the
shifted function at x=0 is equal to J*. The functions x̃L,H�J*�
are just the inverse functions of the unique functions J̃L,H�x�.
Then the local solutions at a point with initial condition J*

are given as

J�x − x0,J*� = J̃„x − x0 − x̃�J*�… . �16�

The functions J̃L,H�x� and x̃L,H�J� can, for example, be ob-
tained by numerical solution of �10� with initial conditions
JL,H

0 .

B. Selection of the global current profile

The physically realized global current profile in the steady
state is also determined by shock dynamics �27,34�. Shocks
manifest themselves as discontinuities in the density profiles.
If they are stationary they connect different local steady state
solutions of �10� to form a global solution. The crucial quan-
tity for this selection is the shock velocity

vs =
J+ − J−

�+ − �−
�17�

that determines the propagation of a discontinuity in a �not
necessarily stationary� density profile. Here J+��+� is the cur-
rent �density� right of the shock and J−��−� is the current
�density� left of the shock. In homogeneous driven lattice
gases with a single maximum in the CDR only upward
shocks with �+	�− can exist �see, for example, �34,35��. In
�27� this was generalized to systems with particle creation
and annihilation in the bulk, as long as the local creation and
annihilation rates vanish in the continuum limit, i.e., s���
→0 for L→�. In this case, the CDR is the same as in the
corresponding particle-conserving system.

In inhomogeneous systems there can also be “downward”
discontinuities at the defect sites due to the imposed maxi-
mum current. However, these discontinuities usually are not
called “shocks” since their dynamics differ. In contrast to
shocks they are sharp also in finite systems; thus there are no
fluctuations. Due to the local character of vs and vc we can
state that away from defects, where locally the system is
homogeneous, only upward shocks can exist.

Since the source term s��� of �1� vanishes in the con-
tinuum limit, shocks can only be stationary at intersection
points of a high- and a low-density solution JH�x� and JL�x�.
So only at these intersection points can a switch of the physi-
cally realized local solution occur. Note that local solutions
of the same kind JL or JH cannot intersect since the differen-
tial equation �10� is of first order. Since S���, which
determines the slope of the current profile, is assumed to be
a monotonically decreasing function in �, we have
S��H��S��L�; hence the gradient of the high-density solution
JH�x� is smaller than that of the low-density solution JL�x�.
Therefore, left of an intersection point, we have
JL�x��JH�x�, while right of it JH�x��JL�x�. Since JL is the
physical solution left of a shock and JH right of it, the mini-
mal local solution is always the physical one �see Fig. 8,
bottom�. We define the minimal envelope of all the local
current profiles as the capacity field of the system,

7Note that this is the case for systems with strict exclusion inter-
action like TASEP and TASEP-LK. If double occupancy is possible,
the CDR does not necessarily vanish for �=1.

FIG. 8. �a� Local solutions in the vicinity of a point with an
initial condition J*. Due to the non-unique inversion of the current-
density relation, there are two possible solutions. Since for a physi-
cal solution the direction of the collective velocity must point away
from this position, only solutions with maximal current are realized.
�b� Intersection point of local solutions of the density profile. The
constraint that only upward shocks can exist implies that only so-
lutions with minimal current are physically realized.
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C�x� ª min
x�


J„x − x�,J*�x��…� �18�

with defects at the points x�. This function does not depend
on the boundary rates. The capacity field is a generalization
of the capacity introduced in �30�. Note that in general the
capacity field is not identical with the local transport capacity
J*�x�.8 The local transport capacity can be viewed as the
source or “charge” of the capacity field. In this view, the

function J̃L,H�x−x0�, which generates all local current pro-
files via �16�, can be called the “Green’s function” of the
capacity field.

Additional conditions on the current profile are given by
the boundary rates so that ��0�=� and ��1�=1−�. Of course
the maximum current of the homogeneous system Jhom

max re-
mains an upper bound also in the inhomogeneous system.
The capacity field together with the boundary conditions can
be used to express the physically realized current profile as

J�x� = min�J��x�,J��x�,C�x�� . �19�

This principle is the generalization of the extremal current
principle for the homogeneous TASEP �36�. It provides a
tool to obtain the global current profile if it is possible to
obtain the local solutions of �10� and the local maximum
current J*�x�. Indeed the global current profile given by �19�
identically satisfies the condition �11� that the current must
always be lower than the transport capacity.

In Fig. 9 we compare computer simulations of a system
with a few defects with results obtained by the minimal prin-
ciple �19� in order to illustrate some features of the
TASEP-LK with defects. We chose high boundary rates, so
that the resulting current profile is exactly the capacity field
C�x�. For the values �=�a=�d=0.2 analytical results for
the local current profiles in the continuum limit are available.
Following �25,31�, we used the reference functions

J̃L�x�=�x−�2x2 and J̃H=−�x+�2x2 that obey the initial

condition J̃L,H�0�=0 to reproduce the local solutions of �10�.
The transport capacity was obtained in the LIBA by results
of a TASEP with a single bottleneck. The first three bottle-
necks are well separated by a large distance. Here we see that
the LIBA works quite well and the current profile is repro-
duced by the minimal principle quite accurately. We also find
that, at the position of bottleneck 2, the actual current is less
than the transport capacity since the local solution of defect 1
is less than J*�x2�.9 For bottleneck 4 there are deviations
from the LIBA since bottleneck 5, which is quite close to
bottleneck 4 �distance=6 sites�, perturbs the transport capac-
ity by further decreasing it. Nonetheless, in this region also

the minimal principle works if one takes the real transport
capacity10 instead of the LIBA.

C. Local current profiles in the disordered TASEP-LK

We now want to quantify our results by finding the local
solutions of the differential equation �10� and the continuity
equation �1�, respectively. For a numerical evaluation of
these equations we need the CDR J��� and its inverse
�L,H�J�.

If there are only few defects in the system we have seen
that the CDR is the same as in the homogeneous system, as
long as the current is below the maximum current J*, since
the increase of the average density is negligible. Thus in the
TASEP-LK with defects we can use the same CDR as in the
homogeneous system: J���=��1−��. Therefore the local so-
lutions are the same as those of the homogeneous systems.

The situation is different for a finite fraction of defects in
the system. Then the average density is strongly influenced
by the dense distribution of defect peaks which leads to an
altered current-density relation even in the nonplateau region
�6�. We will give an approximation to calculate the current-
density relation for small, but finite, defect density �1 if it
is not too close to the maximum current. For that purpose we
virtually divide the system into homogeneous subsystems
with fast hopping rate p, while the slow hopping bonds con-

8For example a single defect at site xd and maximum current J
1def
*

has a peaked local transport capacity J*�x�=J
1def
* ��x−xd�, while the

capacity C�x� is an extended function.
9We observe a tiny spike at the position of bottleneck 2, which is

due to the influence of the density peak on the slope of the current
profile at this point, though this effect should vanish in the con-
tinuum limit.

10The value of the perturbed transport capacity at x4 can actually
be obtained by simulating a TASEP with a bottleneck of length 3
and a single defect at a distance of six sites.
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FIG. 9. �Color online� Comparison of simulation and semiana-
lytical results for the capacity field �=current profile for high bound-
ary rates; here �=�=0.9� by the LIBA. Bottlenecks are at sites xi

�first defect site� with size li: x1=1000, l1=4; x2=1500, l2=2;
x3=2800, l3=2; x4=4000, l4=3; x5=4008, l5=1. Further details are
given in the text.
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nect these subsystems.11 In the first instance we neglect cor-
relations in the defect bonds. The subsystems have an aver-
age size 1 /�. In this point of view, the peaks at the defects
are the boundary layers of the homogeneous subsystems.
Without losing generality, we can assume the system to be in
the low-density phase and observe the local solution of the
right boundary where peaks are concave. This can be trans-
ferred to high-density solutions by a particle-hole symmetry
operation. Since �a ,�d�1 /L, we can neglect them for large
systems when looking at a single subsystem; thus we can
treat them as homogeneous TASEPs. In a large homogeneous
TASEP in the low-density phase, the density is given by �0
=1 /2−1 /4−J in the bulk far from the boundary. We can
write the mass mª�i=1

L �i of the system as m=L�0+mp with
mp being the mass of the boundary layer. mp thus corre-
sponds to the mass of a peak in the inhomogeneous system.

We approximate that the mass of the peaks does not de-
pend on the distance between adjacent defects. Then we can
write the average density as

��x� = �0„J�x�… + �mp„J�x�… , �20�

since � is the fraction of defect sites. Surprisingly, this rather
uncontrolled approximation is supported by Fig. 10, where
we plotted the mass in a system with two defects in depen-
dence on the distance between them.

In this approximation, the mass of the peaks can be cal-
culated analytically, since due to the independence of dis-
tance we can take it as the mass of the boundary layer in a
large homogeneous TASEP, where exact results are available
for given current J �18�. The density at a site L−n is given by

��L−n� = JSn�J� + Jn+1Rn�1/�1 − ��� �21�

with

Sn�x� =
1 − 1 − 4x

2x
− �

j=n

�
�2j�!

�j + 1�!j!
, �22�

Rn�x� = �
j=2

n+1
�j − 1��2n − j�!
n!�n + 1 − j�!

xj . �23�

Thus the peak mass is

mp = �
n

���L−n� − ��1 − ��� , �24�

while the sum is truncated once the terms are small enough.
Equations �20�–�23� can be used to calculate the current J

for a given density � in the low-density phase �and in the
high-density phase by particle-hole symmetry�, and vice
versa:

J��� = �� − �mp��1 − � + �mp� . �25�

This relation can be used to obtain a local solution of the
differential equation �10� for a given initial condition Ji by
iteration. In Fig. 11 we compared profiles obtained by this
procedure with results from computer simulations. One ob-
serves an excellent agreement which holds if the current is
not close to the transport capacity. Together with the minimal
current principle �19� the global current profile can be ob-
tained.

The corresponding density profile can be obtained by in-
verting the CDR with respect to its two branches. Regions
with a high-density solution of the current profile correspond
to a high-density domain with the density �H�J�x�� obtained
by the inverted current density relation. Analogous to that,
low-density domains exist in regions of low-density solu-
tions.

D. Phase diagram of disordered systems

We now want to investigate the phase diagram of inho-
mogeneous driven lattice gases. If one of the local boundary
solutions J��x� or J��x� is the minimum of all local solutions
in the whole system, we have a low-density phase �L� in the
former case and a high-density phase �H� in the latter and
there are no shocks in the system. These phases have the

11This division into subdivisions is motivated by the interacting
subsystems approximation �10�.
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FIG. 10. Mass m of two density peaks m=�i=1
L ��i−�� in the

low-density phase of the TASEP with two defects in dependence on
the distance between the defects. One observes that the dependence
is rather weak.
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FIG. 11. �Color online� Comparison between simulation and
analytical results for the current profile in a disordered system with
�=0.2, �a=0.2, �d=0.1 for entry rate �=0.1 and exit rate �=0.9.
Since the current is less than the transport capacity throughout the
system, the profile corresponds to the local current profile of the
boundary condition ��0�=�. We observe excellent agreement be-
tween numerical and analytical results. This agreement holds for
low current. Deviations occur only if the current comes close to the
transport capacity.
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same macroscopic properties as in the corresponding homo-
geneous system.

If there are intersecting points of local solutions they
manifest themselves as shocks in the density profile, separat-
ing high- and low-density regions �phase separation� corre-
sponding to the realized high- and low-density solutions of
the current profile. Phase separation can also be observed in
homogeneous systems with Langmuir kinetics like the
TASEP-LK �25� and the model considered in �38,37�. Here
the local solutions of the boundaries J� and J� can intersect,
leading to a single stationary shock in the density profiles,
separating a low-density domain left of it and a high-density
region right of it. This is called the shock phase �S� �25�,
which is preserved as long as the minimum local profiles are
the boundary current profiles. However, this kind of phase
separation differs from the phase separation induced by de-
fects. While in the S phase the bulk behavior is still deter-
mined by the boundary conditions, phase separation due to
the finite transport capacity of defects is accompanied by a
region where the current is “screened” by the defect�s� and is
independent of the boundary condition, i.e., �J�x� /��=0 for
all x inside this region. If the phase separation is due to the
screening by defects we rather refer to a defect-induced
phase separated phase �DPS�. If both boundary profiles
J��x� and J��x� are larger than C�x� in the whole system, the
complete system is screened. The current profile is com-
pletely determined by the defect distribution and identical to
the capacity field C�x�. As argued in Sec. II we call this fully
screened phase the Meissner phase �M�.

Another possible scenario is that the current near the
boundaries is limited only by the maximum current of the
bulk, i.e., C=Jhom

max, and we have a maximum current phase
with long-ranging boundary layers as in the homogeneous
TASEP. However, in disordered systems with randomly dis-
ordered defects, the distances of defects are microscopic and
the probability that C=Jhom

max vanishes in the continuum limit.
We can characterize the phases by two quantities.
�1� The total length �H of high-density regions. This is the

sum of individual high-density regions and corresponds to
the total jam length in traffic models �39�.

�2� The screening length �,12 which is the size of the area
where the current profile does not depend on the boundary
conditions. This is exactly the region where the boundary-
independent capacity field C�x��J�,��x� and the local
boundary profiles are not the physically realized ones.

In Table I the behavior of these quantities in the different
phases is displayed. Indeed this can be used to define the
phases. For �=0 defects do not influence the current profile
and the system is in one of the “pure” phases L, H or S,
determined by the boundary conditions. If 0���1 there is
phase separation and a part of the system does not depend on
the boundary conditions; the system is in the DPS phase. For
�=1 the complete system is screened and the current profile
is solely determined by the defect distribution and the system

is in the M phase. The pure phases L, H, S can be character-
ized by �=0 and the vanishing of high-density regions
�L ,�=0�, coexistence of high- and low-density regions
�S ,0���1�, and a global high-density region �H ,�=1�.

The transition from L or H to DPS is marked by a discon-
tinuity in �, but it is continuous in �. Indeed, due to the
discrete distribution of defects, � itself is discontinuous
throughout the DPS phase while � is not. In the M phase
both � and � are constant, while �=1 and � takes a finite
value �M that is determined by the fraction of high-density
regions in the capacity field C�x�, which depends on the in-
dividual defect distribution.

We see that at most phase boundaries both quantities �
and � are nonanalytic. At the transition from S to DPS phase
though � is analytic; thus it cannot be characterized by �.
Hence, for theoretical investigations it appears to be more
convenient to use � to discriminate defect and nondefect
phases. In simulations it is easier to detect phase separation
�see next section� and use the nonanalytic behaviour of � to
obtain critical points. Due to the analytic behavior between S
and DPS phases, however, this approach is applicable only at
L-DPS and H-DPS transitions. The S-DPS transition has to
be obtained by theoretical considerations.

In particle-conserving systems with defects, the DPS and
S phases vanish since no stationary shocks are possible. Here
both � and � are discontinuous at the transition to the M
phase. However, in these systems the Meissner phase usually
is also called a phase-separated phase �10� since no distinc-
tion between several phases with phase separation has to be
made.

A sketch of the �-� phase diagram of a disordered driven
lattice gas with LK is displayed in Fig. 13. Attachment and
detachment rates are fixed, while here �d	�a. The L, H, and
even S phase might vanish for large �a,d if J�=0�L�	J*�xb�
at some point xd, for any boundary rate � or �, so that phase
separation with screening already occurs for vanishing
boundary density. The dashed lines mark the phases of the
homogeneous system. These pure phases are overlaid by the
DPS and M phases which are characterized by the critical
boundary rates �� ,�� and �* ,�*. �� and �� mark the mini-
mal boundary rates at which the respective local boundary
profile intersects the capacity field, i.e., J�,�	C�x� for at
least one point x, while at the rates �* ,�*, J�,�	C every-
where, so that local boundary profiles cannot propagate into
the bulk. In Fig. 12 we sketched some critical current profiles
to illustrate the critical parameters. In parameter regions
where J� and J� do not intersect, �� and �� do not depend on
each other and neither do �* and �*; hence the phase dia-

12This terminology is inspired by the screening length in �30�.
Nonetheless, the reader should be alert that in that work the mean-
ing of � is different, corresponding to a maximum screening length
in our terminology.

TABLE I. Values and properties of the characteristic order pa-
rameters � and � in the different phases. These properties can be
used to define phases.

L H S DPS M

� 0 1 0���1 0���1 �M

Continuous Continuous

� 0 0 0 0���1 1

Discontinuous
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gram has a simple structure with phase boundaries parallel to
the parameter axes. However, as we can see in Fig. 12, ��
and �* do depend on each other since J��*�=J���1�. The
same relation is valid for �� and �*. Inside the region of
intersecting boundary profiles �the shock phase of the homo-
geneous system�, the structure is nontrivial. The phase tran-
sition betweeen the S and DPS phases depends explicitly on
the variation of the intersection points of boundary profiles
and minimal defect profiles. Explicitly, it is given by the
condition that a triple points xt with J��xt�=J��xt�=C�x� ex-

ists. One special case for which this condition can be solved
exactly is the disordered TASEP-LK for �a=�d in the
strong continuum limit, where terms of O�1 / ln L� are ne-
glected and the defect density � scales to zero as
��1 / ln L. In this case the capacity field C is constant and
the transition line is just a diagonal straight line. The phase
diagram in the strong continuum limit is derived in the Ap-
pendix and displayed in Fig. 14. Although this limit is not
quite physical it can be used as a reference point to argue that
for finite defect densities the S phase is convex �see also the
Appendix�.

If we go away from the strong continuum limit, C�x� is
not a constant. The structure of C is not smooth as was ar-
gued in Sec. IV B, so neither is the transition line. In Fig. 13
we display a rather generic sketch of a phase diagram that
incorporates these arguments. Phase diagrams of other driven
lattice gases with the properties noted in the Introduction will
have the same topology.

V. EXPECTATION VALUES FOR PHASE TRANSITIONS

As in particle-conserving systems, the properties of disor-
dered driven lattice gases with Langmuir kinetics depend
strongly on microscopic details of the defect sample. Since
we are interested in macroscopic properties that do not de-
pend on microscopic defect distributions, we concentrate on
probabilistic quantities of ensembles of systems. One quan-
tity of interest is the expected fraction of systems that exhibit
phase separation in an ensemble of systems with identical
system parameters and defect density. In this section we de-
rive a procedure to calculate this quantity based on analytical
results obtained by the principles from the last section.

In order to compare these results with Monte Carlo simu-
lations we introduce virtual particles similiar to second-class
particles �40� that indicate if phase separation occurs in the
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FIG. 12. �Color online� Illustration of some current profiles,
including critical profiles. We see that the critical rates are related
by the critical current profiles: �*=�L(J���1�), while �L��� is the
inverted �low-density� CDR and J���1� is the local right boundary
solution for �=��. An analogous relation is valid for �*. The bold
lines are the local current profiles consistent with the initial condi-
tions imposed by the defects, whose minimal envelope is the capac-
ity field. The thin lines are the critical boundary profiles and the
dashed line corresponds to phase-separated boundary current
profiles.

FIG. 13. Phase diagram of the disordered TASEP-LK for
�a	�d. The critical rates depend on each other as �*=�L(J���1�),
as is argued in the text. The transition line between the S and DPS
phases is not smooth in the weak continuum limit due to the un-
smooth structure of the capacity field �bold line�. In the strong
continuum limit the DPS phase is concave �bold dashed line�. The
topology of other disordered driven lattice gases is expected to be
the same.

FIG. 14. Phase diagram of the disordered TASEP-LK with
�a=�d¬� in the strong continuum limit. The bold line at the
S-DPS boundary is valid for � scaling as 1 / ln L and the dashed line
�sketched� is valid for finite defect density. The critical rates are
given by �*=�*= �1−1−q� /2, ��=�*−�, and the same for �,
with �=0.1, q=15 /16. The phase boundaries of the S phase are of
second order. For �	1 /2, the L and H phases vanish.
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simulated system. These particles do not change the dynam-
ics of the system. The predicted probability for phase sepa-
ration is then compared with the relative frequency of phase
separation in a set of simulations.

A. Automated detection of phase separation

We introduce so-called virtual particles �V particles� to
identify and distinguish high- and low-density regions. These
particles do not follow the exclusion constraint; instead they
can occupy all sites even if these are occupied by particles.
The dynamics of the V particles is the following. At the
beginning, a V particle is put on each defect site. After each
lattice update the V particles are updated sequentially begin-
ning at the left. Each V particle hops to the right if there is a
particle on its site, while it hops to its left adjacent site if it is
residing on an empty site. The V particle cannot hop over
slow bonds; thus, if it is on a defect site, it cannot hop to the
right, while if it is on a site right of a defect site, it cannot
hop to the left. Hence, at any time, there is exactly one V
particle between each pair of contiguous defect sites. If the
average density between two defects is larger than 1 /2, the V
particle tends to move to the right, while for ��1 /2 it tends
to move to the left. Thus, we can identify a high-density
region by a V particle that is, on average, closer to the right
defect. By computing the average distance of a V particle to
the defect right of it we can identify if there is a high-density
region in its vicinity.

Using this procedure we can run a large number of simu-
lations and automatically identify whether high- and low-
density regions coexist. In this way the relative frequency of
phase-separated systems and an estimate for the probability
of phase separation can be determined.

B. Analytical approach for phase separation probability

We use the results from the last sections in order to derive
an analytical approach that allows the determination of the
probability that for a given defect density � phase separation
occurs. Again we consider ensembles of systems instead of a
fixed configuration of defects.

The condition that no phase separation occurs is

J��x� � J*�xb� and J��x� � J*�xb� for all xb. �26�

The fact that only low-density solutions can intersect high-
density solutions also implies that an increases of � leads to
a shift of phase boundaries �in the phase-separated phase� to
the left while an increase of � moves the phase boundaries to
the right. This can be seen in Fig. 4.

Following the LIBA, we assume that the transport capac-
ity at a position x approximately depends only on the length
of the bottleneck at this point; thus J*�x�	J*(l�x�). In a
system with binary disorder there are on average L�1−��
bottlenecks and the probability that one specific bottleneck
has length l is P�l�= �1−���l �11�.

The relation between bottleneck length and transport ca-
pacity J*�l� as well as its inverse relation l�J*� can be ob-
tained by analytical considerations or numerical computa-
tions in single-bottleneck systems. The probability that the

current is below the transport capacity at a given position x is
then

P�J � J*� = P�l � l�J�� = �
l�=0

�l�J��
P�l� = 1 − ��l„J�x�…�. �27�

The probability P that no phase separation occurs is equal
to the probability that the current is below the transport ca-
pacity everywhere in the system:

P = �
i=1

�Nbn�

P�J�i� � J*
„l�i�…� = �

i=1

L

�1 − ��l„J�i�…�� . �28�

Here Nbn is the number of bottlenecks from left to right, so
J�i� is the current at bottleneck i counted from the left. Since
on average there are �Nbn�=L�1−�� bottlenecks, we can de-
termine J�i� recursively by rescaling Eq. �1� by the factor
1 / �1−�� to obtain

J�i + 1� = J�i� + �a�1 − ���1 − ��i�� − �d�1 − ����i� ,

��i� = �0�J�i�� + �mp. �29�

In this way the probability for phase separation, which ex-
plicitly depends on the system size, can be computed itera-
tively by �28�, while analytical results for J�l� in the TASEP
with a single bottleneck are available �10�. In comparison to
Monte Carlo simulations, this computation can be made with
little effort. In Fig. 15 we simulated ensembles of random
defect samples for different parameter values. The fraction of
samples exhibiting phase separation is determined by the
method from Sec. V A and compared with results obtained
by �28�. One observes a region with a quite steep increase of
the probability. The analytical results fit the simulation re-
sults quite nicely, although there is a small shift to larger
values of �a.

VI. SUMMARY AND CONCLUSIONS

In this paper we have investigated the interplay between
Langmuir kinetics �particle creation and annihilation in the
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FIG. 15. �Color online� Fraction of samples that exhibit phase
separation in dependence on the attachment rate �a for fixed
�=0.1, �=0.9, �d=0.3. The system size is L=1000 and each data
point is obtained by simulating 200 random defect samples with the
same system parameters. This is compared with analytical results
obtained by �28�.
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bulk� and disorder, realized through randomly distributed
hopping rates, in driven lattice gases connected to boundary
reservoirs. Although both features provide a mechanism for
phase separation �shock formation�, the underlying mecha-
nisms and dynamics are different and might lead to a form of
competition.

Based on Monte Carlo simulations of the disordered
TASEP-LK, a TASEP with Langmuir kinetics and site-
disordered hopping rates, the main properties of such sys-
tems have been identified. As in the disordered TASEP, we
observe narrow peaks in the vicinity of defect sites. Their
width, however, vanishes in the continuum limit. For larger
values of the boundary rates we observe defect-induced
phase separation, where multiple macroscopic high- and
low-density regions with a multitude of shocks occur.

These findings can be understood in terms of an extremal
principle. In contrast to the principle originally proposed for
homogeneous systems �34,36�, it is a local principle for the
current profile. This is a direct consequence of the interplay
between Langmuir kinetics, which induces a site dependence
of the stationary current, and the randomly distributed inho-
mogeneities. In our approach we assumed that defects locally
induce a reduced transport capacity, imposing an upper
bound to the current. For weakly interacting systems this
quantity approximately depends only on the local distribu-
tion of defects, especially on the size of the bottleneck. In
this approximation �the LIBA� we can obtain the transport
capacity by referring to single-bottleneck systems. The trans-
port capacity provides additional initial conditions to the dif-
ferential equation �10� which gives the slope of the local
current profile in the continuum limit, each of them repre-
senting a individual local solution. Shock dynamics impose
additional conditions on the physical current profile. Hence,
out of the multitude of solutions only the profile that locally
minimizes all solutions is physically realized. The full cur-
rent profile can be obtained by superposing the solutions of
all single bottlenecks which are described in terms of the

same Green’s function J̃L,H�x� defined in Sec. IV B.
While in systems with only few defects local current pro-

files are almost identical to those of homogeneous systems,
they significantly differ in large systems with a finite fraction
of defect sites. In the case of the disordered TASEP-LK local
density profiles can be accurately reproduced by identifying
the density peaks with boundary layers of small virtual sub-
systems where exact results are available.

The minimal principle can be used to predict some fea-
tures of the phase diagram. As was already observed for
single defects in �30�, defects can generate screened regions
where the influence of boundary conditions vanishes. We can
distinguish the original nonscreened phases which are also
present in homogeneous systems, a partially screened phase
exhibiting phase separation and a fully screened phase where
the influence of the boundary conditions vanishes com-
pletely. For the strong continuum limit where terms of
O�1 / ln L� do not contribute, the minimal principle even al-
lows the determination of the exact phase diagram, while in
the weak continuum limit at least most qualitative aspects of
the phase diagram remain accessible. The LIBA and the
minimal principle can also be applied together with a statis-

tical approach to obtain an approximation for the probability
that a randomly produced disorder sample exhibits phase
separation.

Although the results have been derived and tested on the
TASEP-LK we believe they are generic for a large class of
driven lattice gases, at least if they are ergodic with short-
ranged interactions and a single maximum in the current-
density relation. In more general processes the lateral current
s��� takes the role of attachment and detachment processes.
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APPENDIX: PHASE TRANSITION LINES IN THE STRONG
CONTINUUM LIMIT

Usually it is quite difficult to determine the transition line
between S and DPS phases. One special case where it is
possible to solve that problem exactly is in the strong con-
tinuum limit in the disordered TASEP-LK for �a=�d¬�.
In addition the number of defects is infinite, while the defect
density is scaled to zero as �=O�1 / ln L�. The average length
of the longest bottleneck in a system of size L scales as
ln L / ln � �11,13�, so in the strong continuum limit there has
to be an infinitely large bottleneck with a local transport
capacity J

M
* =q /4. Moreover, we can say that this is the case

for any small interval of length � if � is scaling slower than
1 /L, corresponding to L1 /L=L sites. The global capac-
ity field therefore simply is the constant function C�x�=q /4.
Since the defect density vanishes, the CDR is the same as in
the homogeneous system as was shown in the previous sec-
tions numerically and analytically. The local boundary cur-
rent and density profiles will therefore be the same as in the
homogeneous system. Now the problem we have to solve is
equivalent to finding the transition from the S to the so-called
LMH phase �for a definition, see Ref. �31�� in the homoge-
neous TASEP-LK if the homogeneous maximum current J*

=1 /4 is exchanged by q /4 �25,31�. In these works, the tran-

sition line was determined to be �̃*��̃�=�L�J*�−�− �̃. In-
serting J*=q /4, we obtain for the transition line

�̃*��̃� = 1/2 −1 − q

4
− � − �̃ , �A1�

which is just a shift of the phase transition line to the right by
the term �1−q� /4. The properties of the phases of course
are different from the ones in the homogeneous system as we
have argued before �especially the absence of long-ranged
boundary layers�. The phase diagram is displayed in Fig. 14.
We have to point out that in this limit the transition is of
second order, since � is continuous.

Nonetheless, the vanishing of � in the continuum limit is
not quite physical, so we try to obtain at least qualitative
results for the S-DPS transition line for finite �. In Secs.
III B and IV C we have seen that a small but finite defect
density �	0 leads to a flattening of the local density profiles
due to a broadening of the density peaks, so that their slopes
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��L,H /�x, which are positive for �a=�d, ��1 /2, ��1 /2,
are decreasing for higher current J.

Assume the system is on the transition line between S and
DPS phases, i.e., a triple point xt with J��xt�=J��xt�=q /4
exists. A shift of both �� and �� by an infinitesimal amount
dx also shifts the triple point, though it persists. In parameter
space, this corresponds to a movement along the transition
line, while the boundary values are changed by

d� = � ���

�x
�

x=0
dx and d� = − � ���

�x
�

x=1
dx �A2�

⇒
d�

d�
= −

� ���

�x
�

x=1

� ���

�x
�

x=0

, �A3�

using the relations �=���0� and �=1−���1�. Since the
boundary current J�,� is monotonically increasing with � and

� for � ,��1 /2, the flattening of the density profiles leads to

� ���

�x
�

x=1
� � ���

�x
�

x=0
⇒

d�

d�
	 − 1 for � 	 � ,

�A4�

� ���

�x
�

x=1
	 � ���

�x
�

x=0
⇒

d�

d�
� − 1 for � 	 � ,

�A5�

along the transition line. This corresponds to a concave dis-
tortion of the DPS phase as displayed in Fig. 14.
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